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Three-dimensional honeycomb porous ceramics were fabricated using the fused
deposition process. The structures were designed to have a controlled interconnected
porosity. Elastic interactions between pores of honeycomb ceramic materials were then
evaluated for different pore parameters using the finite element modeling (FEM) approach.
The FEM results were compared experimentally with the compressive failure strengths of
the honeycomb ceramics. The effect of relevant pore parameters on the compressive
strength was studied. An analytical fracture mechanics based approach is presented for
comparison with the FEM to reflect on the relative importance of pore parameters for
different volume fractions of porosity. A detailed insight is also provided into the
interrelation between various porosity parameters, mechanical behavior and design of
these structures. C© 2004 Kluwer Academic Publishers

�th Theoretical volume fraction porosity
�exp Experimentally measured volume fraction

porosity
W Road width in polymer mold (or) Pore width

in porous ceramic structure
H Slice thickness in polymer mold (or) Pore

height in porous ceramic structure
I Raster gap in polymer mold (or) Horizontal

pore-pore interaction distance between
pores

S Pore shape
Z Pore size
σcomp Maximum compressive failure stress
σtension Maximum tensile failure stress
R Stress ratio = σcomp/σtension
ESIP Effective stress interaction parameter
SCF Stress concentration factor = σθ/σapplied
σθ Stress on pore boundary
Rpore Stress ratio along pore boundary

1. Introduction
Porous ceramic materials have a wide range of ap-
plications that includes fuel cell separators, biological
media, bone grafts, catalytic supports, filters and gas
sensors [1–3]. Porosity in ceramic structures divides
them into two types-high or low density. High-density
porous ceramics exhibit volume porosity less than 30%,
depending on the stacking sequence of ceramic par-
ticles. This porosity is formed by partial sintering at
controlled temperatures [3–8]. Low-density porous ce-
ramics with volume porosity greater than 70% are also
called foams or cellular solids. They are formed by pore
forming agents [2, 9–11]. The porosity in these high and

low-density porous materials is commonly random in
nature.

Theoretical and experimental characterization of
porous materials is not new; several theories have been
postulated to characterize the mechanical strength and
strength degradation due to random porosity of poly-
crystalline ceramics [12–18]. Successful models are
available for low density cellular solids [2, 19–22]. For
materials with high density (above 0.3 of theoretical)
several theories have been postulated to explain strength
degradation. These theories can be classified into three
broad categories: (1) reduction in cross-section area, (2)
stress concentration and (3) effective flaw size. There
have been several studies of the effect of porosity on
mechanical strength, but none have been definitive [3].
Arguments presented in support of this view are: (a)
the variable nature of stress concentrations for isolated
pores, (b) the interactive nature of stress concentrations
because of porosity in which pores were no longer iso-
lated and (c) the interaction of pores and cracks. There
are also equations cited in the literature that have been
used to fit experimental results from porous solids. They
are generally based on empirical constants that are re-
lated to the volume fraction porosity, and are applica-
ble only for certain materials processed under specific
conditions. A need exists for modeling to be carried out
with a broader perspective on porous structures.

In this paper, two popular modeling approaches are
evaluated and their ideas are combined in a more gen-
eral finite element scheme to model non-random porous
materials. Modeling techniques using the minimum
solid area (MSA) across “random” porous ceramics
are used to characterize decrease in modulus with in-
crease in porosity [34, 35]. Likewise, modeling using
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Figure 1 Indirect FDM processing technique. (a) Internal architecture of polymer mold. (b) 3D honeycomb porous structure. Figures plotted not to
scale.

fracture mechanics has been used to study crack growth
using stress intensity factors between specified num-
bers of pores in ductile as well as brittle solids. In this
paper an analytical expression for stress intensity fac-
tor is derived for multiple pores to identify the crit-
ical porosity parameter for a wide range of porosity.
The analytical model is extended by using the finite
element method (FEM) approach to evaluate stresses
around a pore and interactions between stresses for mul-
tiple pores for non-random porous structures. Using the
FEM, a two-pore material system was found to be suf-
ficient to represent multiple pores especially due to the
non-randomness of the pores [23]. Calculated values
were verified with experimental data for controlled hon-
eycomb porous structures with designed tubular poros-
ity. These controlled porosity structures were processed
using the indirect fused deposition process, a com-
mercially available solid freeform fabrication (SFF)
technique [24, 25].

The FEM technique is extended in this paper to
study the interrelation between various porosity pa-
rameters and compressive strengths of 3D honeycomb
ceramic materials. Three dimensional honeycomb ma-
terials have interconnected cylindrical pores along a de-
fined X , Y and Z -axis direction. The processing method
allowed for pores of specific shape, size and connectiv-
ity to be designed, thereby allowing control over the vol-
ume fraction porosity as well. Some discussion is also
presented on the dependence of these properties on pro-
cessing methods and microstructural parameters. The
FEM technique shows good agreement with the experi-
ment results. The result from numerical FEM approach
shows that for wide ranges of porosity, different pore
parameters contribute to failure, thereby agreeing well
with outcome from the analytical fracture mechanics
model.

2. Processing
Fused deposition (FD) process is one of the commer-
cial SFF processes developed by Stratasys Inc. (Eden

Prairie, MN). In this process a thermoplastic filament
is extruded onto a horizontal platform to form a sin-
gle layer of material. Once a single layer is deposited,
the platform moves down and deposition of the next
layer on the previous layer starts. The process contin-
ues till a complete structure is built, based on its CAD
information.

The SFF techniques can be used to fabricate func-
tional metal/ceramic parts or prototypes in two ways:
(a) the direct and (b) the indirect route. In the direct
route, green metal/ceramic components are fabricated
directly from their CAD file using an SFF process
[26]. In the indirect route, a polymer mold of the de-
sired structure is fabricated via an SFF process. The
positive is then cast using a metal/ceramic powder-
based slurry/gel, via a lost mold technique. In this
study, an indirect process was used where polymeric
molds were fabricated using FDM 1650 machine. Mul-
lite powder1 of −325 mesh size was used, with addi-
tives, to form the water-based slurry. The slurry de-
velopment has been reported elsewhere [27, 28]. After
the infiltration of the porous molds, the samples were
dried, binder was removed, and they were pressureless-
sintered to obtain the 3-D honeycomb structures. A
different pore architecture was obtained by custom de-
signing the molds. The schematic of internal archi-
tecture of polymer mold obtained through FD which
results in a non-random porous structure is shown in
Fig.1.

Fig. 1a shows the FD extruded single deposit called
a “road”, which has a width (W ) and height (H ). The
horizontal distance between the roads is called as road
gap (I ). Fig. 1b shows the 3D honeycomb ceramic
formed, via the lost mold technique, which exhibits
cylindrical pores with width and height determined by
the road width (W ) and the road height (H ). The hori-
zontal pore-pore interaction is imparted by the road gap
(I ). Using this processing route, non-random porous

1MULCOA, C. E. Minerals, PA, USA.
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structures were formed in the range of 21–47% poros-
ity with controlled pore size, shape and connectivity.

3. Modeling of porous structures
3.1. Minimum solid area
Minimum solid area method (MSA) is popular to char-
acterize failure of random porous structures [34, 35].
For the tubular designed 3-D porous ceramics used in
this study the pore interaction distance (I ) represents
the MSA. However, it should be emphasized that the
change in pore width (W ) can be an important param-
eter, since it causes change in shape (S) and a non-
uniform change in size (Z ). The MSA/pore interaction
distance would be limited in characterizing a porous
ceramic when the minimum solid cross-section across
the porous ceramic is constant while the change in vol-
ume fraction porosity is achieved by modifying the
pore shape and not the pore-pore distance, which af-
fects the failure strength of porous bodies. Therefore
the MSA/pore interaction distance approach by itself
would not be able to fully capture the critical failure
parameter for different volume fractions of porosity, if
the MSA does not affect the change in volume fraction
porosity. The effect of W needs to be accounted while
modeling a porous material, although it can be difficult
to predict the exact contribution of W and I on strength
degradation especially for a random porous ceramic.
A statistical study of variance of the experimental and
numerically obtained stress values for 3D honeycomb
porous ceramics shows that the significance of W is in
fact slightly more than I on the strength degradation for
certain pore geometries [36]. Therefore it is essential to
look at other modeling techniques such as the fracture
mechanics based approach or the numerically based
FEM approach to characterize non-random porous ce-
ramics. The MSA model by itself would be insufficient
to explain the failure of porous ceramics for different
pore volumes and failure strengths caused primarily by
pore widths and shapes.

3.2. Fracture mechanics based approach
Fracture mechanics based approaches use analytical so-
lutions to evaluate stress interactions and thus effective
stress intensity factors for a pore or multiple pores in
an infinite medium. From the Griffith theory of fracture
mechanics for a sharp crack the stress intensity factor
K is obtained as,

K = σ
√

πa (1)

where σ is the gross applied stress and a is half the
length of the crack. The material is capable of with-
standing only a certain K value before fracturing.
Therefore at fracture,

K = Kcr ⇒ Fracture

The constant K is the measure of the strength of the
stress field near a crack and is therefore referred as the
stress intensity factor (SIF). Higher the value of K ,

higher is the probability of fracture.

Consider cracks of length (2a) are spaced at dis-
tance 2b units apart; i.e. centerlines are 2b units apart
shown in Fig. 2a. The surfaces of the cracks must be
stress free. The following boundary conditions can be
applied,

(1) σy = 0 @ y = 0 for |x | < ±a
(2) σxy = 0 @ y = 0 for all x

(c)

Figure 2 (a) Horizontal periodic cracks in a infinite plate subjected to
tensile loading along the Y-axis (b) Crack of length 2a and a radius of
curvature ρ at the tips. (c) Stress intensity factor as a function of the pore
width and pore-pore spacing.
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(3) τxy = 0 for x = ±(2n − 1)b, n = 1, 2, 3, etc.
(4) For infinite plate, σy = σ for z → ∞
For finite plate, σy = σ for z → finite boundary, such

that the solution is holomorphic in the finite domain.

An appropriate stress function for this problem can
be expressed as,

z = σ sin
(

π z
2b

)
√

sin2
(

π z
2b

) − sin2
(

πa
2b

) (2)

The expression for the stress intensity parameter can
be derived using conformal mapping and fracture me-
chanics techniques as,

K = σ
√

πa

√
2b

πa
tan

(
πa

2b

)
(3)

This analysis also allows for a stress intensity factor for
a specimen of finite size. When 2b > 2a, the change in
K is not observed. Based on this philosophy, an analogy
with the modeling approach adopted in this study can
be derived.

The analysis presented above considers pore as a
crack. Introducing a radius of curvature (ρ) to the crack
as shown in the Fig. 2b, an analytical solution for peri-
odic elliptical pores in a plate can be developed. For a
sharp crack, σy = σmax . at the crack tip. When rx = ρ,
the maximum stress would be,

σmax = σy = 2σ

√
a

ρ
(4)

This expression can be written as

σy = c√
ρ

K√
2πrx

(5)

Here the radius of curvature (ρ) can be expressed
as, ρ = b2

a . When rx = ρ we get,

2σ

√
a

ρ
= c√

ρ

σ
√

πa√
2πρ

(6)

Hence the constant, c, can be found as, c = 2
√

2ρ.
Therefore from the earlier expression of the maximum
stress of sharp crack, an expression for an elliptical
crack with a radius of curvature is found as,

σy = 2K√
πrx

(7)

The stress intensity factor (K ) is the same as that of the
sharp crack presented in Equation 3. This equation can
be expressed in terms of pore parameters, pore width
(W ) and pore-pore interaction distance (I ). The pore
width (W ) is equal to the length of the elliptical crack
(2a) and the center-center distance of pores (2b) is equal
to the sum of pore-pore interaction distance (I ) and W .

Therefore K is obtained as,

K = σ

√
π

W

2

√
2(I + W )

πW
tan

(
πW

2(I + W )

)
(8)

The variation of K as a function of pore parameters, W
and I is shown in Fig. 2c. For curve 1, the distance be-
tween periodic elliptical cracks I was maintained con-
stant at 1 unit and the width (W ) was increased from 0
to 3 units. The stress (σ ) was chosen as 1 unit to eval-
uate the stress intensity factor (K ). When W is small
for a large I , the plate with periodic elliptical cracks
represents a high-density solid with microporosity of 0
to 50 volume percent. It can be observed from curve 1
that the K value increases steadily (constant slope) as
the pore width increases. This suggests that W is the
critical parameter for failure of high-density solids.

As W is increased maintaining a constant I value,the
plate with pores represent a cellular solid. The curve 2
shows the variation of K with change in I for a constant
W value. In curve 2, W is maintained constant at 1 unit
and I is varied from 0 to 3 units. It can be observed
that as I decreases with respect to W , the stress in-
tensity increases exponentially. This suggests that I is
the critical parameter for failure of low-density solids.
If both W and I are considered as critical parameters
for failure, a variation in stress intensity K may not be
observed for the change in W or I . This suggests that
for certain porosity depending on its range, either W
or I act as the critical parameter in failure as seen in
this analysis. From the modeling approach proposed in
this paper, similar results are seen as described in the
following sections.

To understand the influence of the different pore pa-
rameter on failure, numerical approach using FEM is
needed. Such a study is presented in more details in the
following sections.

3.3. Numerical modeling using FEM
3.3.1. Two-dimensional model

of failure plane
Compressive strength of porous materials is generally
not controlled by single or isolated pores, since com-
pressive failure is typically one of cumulative damage
or cracking [3]. This is in contrast to tensile failure, in
which catastrophic failure from the single weakest flaw
is the case. Isolated pores or clusters are believed to
have less effect in compression. The high stresses and
progressive failure in compression may provide oppor-
tunity for pore shape and stress concentrations to come
into play via progressive cracking as load increases
[25]. This may increase the porosity-dependence of
compressive strength.

The failure of porous cylinders under axial compres-
sion occurs by vertical slabbing, wherein microcracks
grow or combine to form contiguous vertical failure
planes [29]. The brittle porous structures discussed here
have cylindrical pores interconnected in the X , Y and
Z -directions as shown in Fig. 1. In the presence of mi-
cropores in ceramic, anisotropy of tubular porosity in
the X , Y and Z directions would play a role. Failure
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Figure 3 (a) Schematic of two pore model of the honeycomb porous ceramic structure. (b) Proposed failure plane for tubular porous structures.

would occur along a skewed plane which is a combina-
tion of planes that are horizontally perpendicular and
vertical parallel to the direction of loading. Based on the
assumption that micropores in ceramic are negligible
it can be confidently assumed that under compression
failure planes form vertically parallel to the loading di-
rection and the samples fail by brittle crushing. In this
study the cylindrical pores along the horizontal X and
Y -direction are perpendicular, so a two-dimensional
representation of vertical failure planes can be used to
model the failure of the 3D structure.

The two dimensional representation of one such
plane through which failure occurs is shown in Fig. 2, in
which the volume fraction porosity (�) is represented in
2-D as areal fraction of porosity (Ath). An equation for
the theoretical volume fraction porosity (�th) of a non-
random porous structure has been derived elsewhere
[23]. It is expressed in terms of Ath in Equation 1,

�th = 2(n + 2)

n

(
πW

8(W + I )

)
or

�th = 2(n + 2)

n
(Ath) (9)

where, n is an arbitrary real number and Ath is the areal
fraction of �th. For n = 15, the stereological constant
of proportionality, 2 · (n+2)/n, is obtained as 2.26. This
value is retained for all porosities used in this study. This
constant can be calculated by assuming a large value for
the arbitrary real number (n) or correlating Equation 9
with one porosity value obtained experimentally for a
known pore geometry.

3.3.2. Evaluation of tensile stresses
The basic concept of the FEM approach has been ex-
plained elsewhere [23]. It is observed that on vertical
failure planes, failure zones are formed at locations
on the pore boundaries where the tensile stresses are
maximum. Since tensile failure occurs for ceramics
and other brittle solids at a much smaller load than
compressive failure, porous brittle structures loaded in
compression fail at regions where tensile stresses are
maximum. A stress ratio (R) defined for brittle mate-
rials (compression over tension) gives an indication of

how the material behaves when loaded in a particular
way. For most brittle solids (R) is greater than 10. This
suggests that porous brittle materials may fracture pre-
dominantly due to tensile stresses at pore boundaries.

Since interacting tensile stresses at pore boundaries
are prominent in causing failure, they are used to model
failure in brittle porous solids, subjected to compressive
loading. The maximum tensile stress along the bound-
ary of pore 2 in Fig. 3a is σA(�th, B) at point A. Here,
σA(�th, B) is the enhanced tensile stress component
due to the interaction of pore 2 with pore 1 and B repre-
sents boundary effects to account for interaction of pore
2 with neighboring pores. Boundary effects account for
location of pores and are a physical representation of
behavior in a multiple pore system. Moreover, experi-
ments have shown that cracks interact with the surface
of a finite sample in a way, which causes them to grow
faster than they do in an infinite medium [30].

The maximum tensile stress on the pore boundary
of pore 2 when pore 1 is not present can be evaluated
as σB(�1, B1), where �1 and B1 are effective porosity
and finite boundary respectively, when there is no pore-
pore elastic interaction. The �1 and B1 are directly
proportional to �th and B respectively, for particular
pore geometry, i.e.,

�1α� and B1αB

Therefore the effective stress interaction on pore 2
is evaluated as the ratio of σA(�th, B) to σB(�1, B1).
This unitless parameter can be called the effective stress
interaction parameter or ESIP. By evaluating ESIP val-
ues for different pore geometries and volume fraction
porosities, the multiple pore material system can be
modeled. When multiplied by a constant M for a par-
ticular material system and processing conditions, the
failure stress of porous ceramics is obtained. It is worth
noting at this point that the analysis is an upper bound
solution in which the effects of microporosity are not
considered. The constant M is the value at which the
brittle solid with no interaction between pores will fail
under uniaxial tensile loading (σtension). The value of
M is dependent on factors such as the material system,
processing method, and grain size and distribution. It
has a fixed value when these factors are kept constant.
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4. Boundary conditions, loading and material
properties

The two-dimensional FE analysis was carried out on
the commercial software ANSYS ver. 5.4. Plates with
pores were meshed by triangular 2-D elements; typi-
cally the number of elements varied from 150 to 200 to
obtain a converged solution. The boundary conditions
were set such that nodes along the bottom edge were
fixed in the Z -direction but were allowed to move in the
X -direction, except for the node at one of the bottom
corners, which was fixed in the X -direction to prevent
rigid body motion. A compressive load of unit inten-
sity was applied to the mesh in the Z -direction. Young’s
modulus and Poisson’s ratio were selected as 145 GPa
(0.21×108 psi) and 0.24, respectively, from the CRC
materials handbook for mullite. The plates with pores
were analyzed using the p-method and convergence of
the strain energy at specified nodes at point A of Fig. 2
was set at 0.5% [31]. The 2-D FEA were carried out
in plane stress and plane strain; since stress values did
not vary greatly, plane strain method was adopted and
reported.

5. Experimental method
Cylindrical porous mullite samples 25 mm long and
15 mm in diameter, which had been fabricated using the
processing method described, were subjected to uniax-
ial compressive loading. Green samples were polished
on the top and bottom surfaces to make them parallel
before firing. Sintered samples were tested under com-
pressive loading without any further machining oper-
ation. Samples were placed in a way that one set of
tubular pores was parallel to the loading axis, while the
other 2 sets were perpendicular to the loading axis. The
tests were carried out on a servo-hydraulic load frame
(MTS 4 post (44 KN)) under displacement control at
a stroke rate of 1.27 mm/min keeping thick papers as
compliant layers on the top and bottom plattens. One
of the three pore geometry parameters W , H , and I
was varied to vary the pore volume while the others
were kept constant. The experimental volume fraction

Figure 4 Cumulative failure strengths under compression as a function of volume fraction porosity.

porosity (�expt.), measured with a mercury intrusion
porosimeter (Autopore III, Micromeritrics, GA.) and
Archimedes’ method, varied over the range from 21 to
47%. The equivalent theoretical volume porosity (�th)
is calculated using Equation 1. Shrinkage along the ra-
dius and height of the cylindrical ceramic scaffolds was
measured, and was found to be 8 and 11%, respectively.
The processing and composition of these ceramics is
described elsewhere [24, 28]. Fig. 3b shows schematic
of failure path in these ceramic structures during uni-
axial compression testing. The porous ceramic strands
split from the main structure as the ceramic failed elas-
tically. In the stress-strain diagram, as expected, there
was no sign for any plastic deformation. We also did not
notice any mid-plane crushing with these structures.

6. Results
6.1. Macroscopic study of porosity
The experimental data plotted in Fig. 4 shows the cu-
mulative variation of porosity due to different pore
geometry. The results shown in Fig. 4 present a macro-
scopic viewpoint of strength degradation with increase
in porosity. It is similar to that observed elsewhere for
random porous ceramics [3, 32]. The mullite without
fabricated macropores used in this study exhibited a
measured density of 3.0 gm/cm3. Compared to the the-
oretical density of 3.25 gm/cm3, this indicates a micro-
porosity of 8% due to incomplete sintering. This value
is common for ceramic materials. These samples were
tested in tension to evaluate the tensile strength of the
dense ceramic.

The ESIP value is unity when there is no interac-
tion between the stress fields of the pores for a par-
ticular material system. For the non-random porous
system studied in this paper, the limiting ESIP value
for no interaction can exist when no pores are present.
For this particular condition the theoretical porosity
is equal to zero (�th, Ath = 0). The ESIP value of
unity thus obtained for �th, Ath = 0, multiplied by
the same constant M , will give the tensile failure
strength of a brittle solid.The value of M that cor-
relates the theoretical and experimental results for a
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different macroporosity obtained from different pore
geometries is 91. From this discussion, the theoretical
value of σtension at zero porosity is 91 MPa for the spe-
cific mullite system and processing condition that was
adopted to fabricate the porous structure. However, the
value of σtension = 91 MPa cannot be generalized for
all mullite ceramics which are fabricated using other
processing and surface finishing conditions. Neverthe-
less, for any particular processing condition a constant
specific to that method can be obtained. Such a con-
stant, when multiplied by the ESIP value, will give the
compressive failure stress of a 3D honeycomb porous
ceramic that has been processed by that particular
method.

The compressive strength depends on structural pa-
rameters, e.g., grain shape, orientation and size [3].
When porosity is induced by partial sintering meth-
ods, these parameters play a significant role in the de-
termination of compressive strength as � approaches
zero. In this paper, the sintering cycle was maintained
constant and all samples were processed by slurry cast-
ing in polymer molds generated via FDM (lost-mold
technique). The microporosity induced by incomplete
sintering was maintained constant for all 3D honey-
comb structures.

6.2. Weibull parameters
The test results shown in Fig. 4 display some scatter,
probably caused by imperfections in the porous ce-
ramic. The failure stress can be characterized by an
equation with the form associated with a Weibull dis-
tribution [33].

ln

(
ln

(
1

S

))
= m ln

(
σ

σ0

)
(10)

In Equation 10 S is the survival probability, the frac-
tion of samples that would survive a given failure stress
σ , and m is the Weibull modulus. The normalizing
stress σ0 is the stress at which the survival probability is

Figure 5 Weibull modulus m for failure compressive stress values for different porosities.

1/e = 0.37 for a specimen of volume N . The survival
probability for j th specimen is given by Equation 11,

Sj = 1 − j − 0.3

N + 0.4
(11)

In this paper, the number of samples, N , for any par-
ticular porosity were 10–12 specimens. Fig. 5 shows
the plot of Weibull modulus m for compressive fail-
ure stress as a function of porosity. The mean Weibull
modulus m was 5.7 with a standard deviation of 1.5.
These values of Weibull modulus are comparable to
those observed for tensile and compressive strength of
partially sintered porous ceramics (mten. ∼ 7, mcomp. ∼
3–6) and tensile strength of aluminum foams (m ∼ 7)
[3, 11]. In the following sections the porosity variations
for different pore geometry parameters are analyzed in
detail.

6.3. Microscopic study of pore parameters
The processing method adopted allows the variation of
volume fraction porosity (�) by varying either W or
H or I or by a combination of the parameters shown
in Fig. 1. Hence porosity can be said to be an explicit
function of W , H and I and expressed as an explicit
relation,

� = f (W, H, I ) (12)

The porosity (�) can also be varied by varying pore
shape and size. The pore shape (S) can be varied by
changing W or H and is thus an explicit function of W ,
H . The pore size variation (Z ) can be of uniform or non-
uniform nature. The uniform variation can be achieved
by explicitly varying W and H simultaneously. The
non-uniform variation of pore size is same as pore shape
(S) variation. Hence pore size (Z ) is an explicit function
of W/H and S. Therefore � is an implicit function of
S, Z and I and expressed as an implicit relation,

� = f (S, Z , I ) (13)
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where

Z = f (W/H, S), S = f (W, H )

6.3.1. Porosity variation due to pore-pore
horizontal interaction distance

In this case, variation in porosity (�) is obtained by
only varying pore interaction distance (I ). This is an
explicit analysis variation of porosity, where pore width
(W ) and pore height (H ) are maintained constant and
the porosity is expressed as � = f (I ) . By changing
I , horizontal ceramic width between adjacent pores in
Figs 6 and 7 is changed. As I is increased, the volume
fraction porosity (�) is decreased and the stress inter-
action activity between pores is found to be reduced;
this increases the failure strength of the ceramic struc-
ture. Figs 6 and 7 show the dependence between failure
stress and porosity (�).

In Fig. 6, the two curves represent variation of poros-
ity (�) for two different W values. It may also be no-
ticed that the W : H ratio is different for the two curves.

Figure 6 Variation of � = f (I ), where W, H = Constant. Two values shown for two values of W .

Figure 7 Variation of � = f (I ), where W, H = Constant. Two values shown for two values of H .

The data in Curve 2 are for a pore shape which is almost
circular, and show a higher strength than exhibited by
Curve 1. But it may be worth noting here that although
the pore ellipticity is decreased as W is decreased, � is
reduced too. Hence the effect of pore shape is not easy
to separate in these curves.

Fig. 7 shows the two curves, which represent change
in porosity (�) for two different H values. In this case
according to Equation 9, �th is independent of H, but
the experimental results indicate that H has some effect
on �. The strength of the structures decreases as �

increases. Similar to the previous case, it can also be
noticed that the W : H ratio is different for the two
curves and though the pore ellipticity decreases, � is
also reduced. Therefore the effect due to change in pore
width (W ) on porosity (�) is not clear.

6.3.2. Porosity variation due to pore width
In the data shown in Figs 8 and 9, � is varied by vari-
ation of pore width (W ) alone. Figs 8 and 9 show the
dependence between failure stress and porosity (�).
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Figure 8 Variation of � = f (W ), where H, I = Constant. Curves are shown for three values of I .

Figure 9 Variation of � = f (W ), where H, I = Constant. Two curves shown for two values of H .

The two curves shown in Fig. 8 for variations of poros-
ity (�) are for two different I values. In this variation
of porosity, where pore height (H ) and pore-pore inter-
action (I ) are kept constant, the porosity is expressed
only as a function of W . By increasing W and keeping
H constant, the pore in Fig. 1 is made more elliptical
in the horizontal direction, which increases �. Chang-
ing pore width also causes a change in pore shape (S)
and a non-uniform change in pore size (Z ). In other
words, this involves a variation of porosity, which is a
function of S, Z . As the horizontal ellipticity increases,
stress interaction between pores is found to decrease
slightly. Although this reduces the strength, the reduc-
tion is mainly due to the change in pore shape and pore
volume. The exact contributions are not clear from these
experimental results, which can be observed from point
1 and 2.

Fig. 9 shows two curves for variation of porosity
(�) for two different H values. As observed earlier, H
affects � as shown by the experimental results. It is
seen that as � increases, the difference in strength is
reduced for the two curves. This effect is also observed,
to a lesser degree, in the experimental results.

6.3.3. Porosity variation due to pore height
Variation in porosity (�) can be obtained by varying
pore height (H ). In this porosity variation, pore width
(W ) and pore-pore interaction (I ) are kept constant and
the porosity is expressed as � = f (H ) . By increasing
Hand keepingW constant, the pore in Fig. 1 is made
more elliptical in the vertical direction, proportionately
increasing �. Pore height variation also causes a change
in pore shape (S) and non-uniform change in pore size

4583



Figure 10 Variation of � = f (H ), where W, I = Constant. Values shown for two values of I .

Figure 11 Variation of � = f (Z ) where S, I = Constant. Curves are shown for three values of I .

(Z ). This case involves an implicit variation of porosity;
according to Equation 13 � is also a function of S, Z .
As observed earlier, the effects of pore heights (H ) on
porosity (�) are shown by the experimental results in
Fig. 10. Fig. 10 shows the dependence between failure
stress and porosity (�). The two curves in Fig. 10 for
variation of � are for two different values of I . The
FEM values do not indicate a change with porosity.

6.3.4. Porosity variation due to pore size
Varying pore width (W ) and pore height (H ) simulta-
neously also varies the pore size (Z ) and the porosity
(�). This is an implicit variation of porosity, in which
pore shape (S) and pore interaction (I ) are maintained
constant and porosity is expressed by Equation 13 as
� = f (Z ). The shape ratio W : H is kept a constant
at 2:1. Fig. 11 shows the dependence between failure
stress and porosity (�). The three curves in Fig. 11 for
the variation in � are for three different values of I .
The trends remain the same for different values of I as
shown by the 3 sets of curves in Fig. 11.

7. Discussion
The modeling approach presented in this paper predicts
the failure stresses of three-dimensional honeycomb
porous ceramics. Using the two-pore model illustrated
in Fig. 3 quantitative values of failure stresses under
compression are obtained. The theoretical porosity is
obtained using Equation 9 and the theoretical values of
failure stress are obtained using the procedure outlined.
There is no empirical relation or curve fitting parameter
that is adopted to relate the theoretical and experimen-
tal results. The analysis uses principles of mechanics to
evaluate stress interactions due to neighboring pores. It
also predicts the stresses for porosity variations due to
the pore-geometry parameters shown in Figs 6–11 for
porosities from 21–45 vol%.

The analysis in this paper shows that there is a change
in strength due to a change in volume fraction porosity.
The change in porosity can be caused by the different
pore parameters. One of the modeling approaches of
porous ceramics considers only the minimum solid area
(MSA) [34, 35]. It can be observed from the discussion

4584



presented here that in non-random porous ceramics the
pore interaction distance (I ) represents the MSA. Figs 6
and 7 show the variation of strength due to I . It should
be emphasized that the change in pore width (W ) is also
an important parameter, since it causes change in shape
(S) and the non-uniform change in size (Z ) shown in
Figs 8 and 9. The effect of W should be accounted for
while modeling a porous material, although it is difficult
to predict the exact contribution of W and I on strength
degradation.

It is observed from Equation 9 that the theoretical
volume fraction porosity (�th) as a function of pore ge-
ometry parameters is independent of pore height (H ).
The experimental results of pore parameter variations
in Figs 7, 9 and 10 show that the actual porosity (�expt)
is affected by pore height (H ). This may be due to
various reasons, including tolerances of the FD pro-
cess while making molds and differential shrinkage
after the sintering process of the ceramic structures.
The analytical fracture mechanics approach qualita-
tively highlights the importance of pore parameter for
different volume porosity. Though the FEM does not
compare quantitatively with the analytical results it
does bring out the importance of pore parameter on fail-
ure strength of porous ceramics. Therefore a qualitative
similarity can be deduced between the two modeling
approaches.

7.1. Limitations using the FEM approach
When the ellipticity of the pores become large, W : H >

2.5, the ratios of stress concentrations between com-
pressive and tensile stresses predicted by FEM tends
to become larger than 10 : 1. In such a case, the nature
of failure in the samples may be different than shown
in Fig. 3. This is because the porous ceramic loaded
in uniaxial compression may fail due to compressive
stresses rather than tensile stresses, contrary to the dis-
cussion provided in this paper. The modeling approach
adopted in this paper may not be appropriate for cer-
tain honeycomb brittle ceramics in which stress ratio
(R) is less or pore ellipticity is higher, Rpore > 10 : 1.
Similar inaccuracies in stress predictions may be no-
ticed when in the vertical direction the distance between
pores decrease and the pores are very close. The FEM
results may not clearly predict the stress values, since
the ESIP values are large because of the close stress
interactions.

7.2. Microstructural material issues
All three-dimensional honeycomb structures not only
had porosity which was designed (macroporosity), but
porosity as well, which was due to incomplete sintering
(microporosity). In this study these amounted to ∼8%,
as indicated. The modeling considered only idealized
shapes without microporosity. A quantitative correla-
tion suggests that if the microporosity in a porous ma-
terial is kept to a minimum, the approach can be used
effectively. It also suggests that microporosity does not
play as significant a role as do designed macropores
in the failure of porous materials if the density is near
theoretical values.

The ESIP value for no interaction between pores is
unity, which is observed when the stress fields be-
tween pores do not interact. It does not necessarily
mean that the porosity should be zero to observe no
interaction between the stress fields. Although in non-
random porous structures this case can occur when
the theoretical porosity is zero, such need not be the
only case. It is possible that the ESIP value is unity
when the porosity is between zero and residual value
(∼8%). The theoretical tensile failure stress obtained as
91 MPa in this paper therefore cannot be generalized
to all mullite systems. The actual theoretical value of
tensile strength at zero porosity is difficult to obtain.
The approach presented here provides a convenient so-
lution to evaluate the theoretical tensile strength of the
solid at near zero porosity. It is not clear how the proce-
dure can be extrapolated to model random porous brittle
solids. Moreover, the behavior of non-random porous
brittle solids has only been analyzed from stress inter-
action effects. The method of handling cracks and their
growth from cylindrical pore under compressive stress
has been proposed elsewhere [18, 29]. The results and
theoretical methodology adopted in this paper are con-
sistent with the theory of crack interactions [37]. The
experimental results in this study show that stresses in-
teract with surfaces of a finite sample in a way which
causes them to grow faster than they do in an infinite
medium.

This paper presents a methodology, which can be
used to predict the compressive failure strength of
porous ceramics, regardless of different pore geome-
tries. An argument quoted earlier, that of the interactive
nature of stress concentrations with increasing porosity,
has been considered.

8. Conclusions
Three-dimensional honeycomb porous structures have
been processed through a fused deposition process.
A numerical approach using the FEM is presented to
model these structures for pore geometry by evaluat-
ing elastic stress interactions between pores. It was
observed that the stress interaction values can be mul-
tiplied by the tensile failure stress (σtension) to give fail-
ure stress under compression. Experimental and theo-
retical correlations for pore geometry are shown for
porosity from 0 to 50 volume percent. The use of
empirical relations or curve fitting parameters is not
necessary.

It was found that microporosity does not play as sig-
nificant a role in the failure of porous materials as do
the designed macropores when density is near to theo-
retical. Since behavior of brittle porous solids in com-
pression is complicated, the paper does not arrive at
a complete description, although the behavior of non-
random porous solids was analyzed in detail. This paper
provides an analysis of the interaction of stress con-
centration with increasing porosity, and its effect on
strength when pores are no longer isolated.

An analytical fracture model is presented which cor-
roborates the need to address importance of pore pa-
rameters for different pore densities. It identifies the
critical role played in failure mechanisms by pore shape

4585



in high density solids and pore-pore spacing in low den-
sity solids. The FEM approach extends the analytical
concept and presents a convenient method to model fail-
ure of designed porosity in ceramics. The FE modeling
identifies that pore shape along with pore-pore interac-
tion distance can cause failure especially when porosity
is largely dependent on both. Experimental verification
of the model asserts this viewpoint.
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